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Nonlocal chaotic phase synchronization
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A novel synchronization behavior, nonlocal chaotic phase synchronization, is investigated. For two coupled
Rossler oscillators with only one forced by an injected periodic signal, the phase of the unforced oscillator can
be locked to the phase of the periodic signal while the forced one is well unlocked by the signal; in a chain of
coupled chaotic oscillators with nearest coupling, the phase of an oscillator~or a cluster! can be locked to
another nonneighbor one. Moreover, the mechanism underlying the transition to nonlocal synchronization is
discussed in detail.

PACS number~s!: 05.45.2a
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Synchronization is a basic phenomenon in physics,
covered by Huygens at the beginning of the modern age
science@1#. In the classical sense, synchronization me
frequency and phase locking of periodic oscillators. R
cently, the notion of ‘‘phase synchronization’’ has been e
tended to chaotic systems, and scientists have extens
studied not only the phase synchronizations between cha
oscillators with external periodic drivings@2–6#, but also that
of the coupled oscillator systems@7–12#. Phase synchroniza
tion is an intrinsic feature in the relation between the coup
oscillators~or between oscillators with injected signals!, and
this feature gives essential influence to the system dynam

For a chaotic system of coupled oscillators with near
coupling whose natural frequencies are not equal, the in
tive idea for phase synchronization is the following: due
the nearest-coupling nature, some neighbor oscillators sh
first form synchronous clusters, then by increasing coup
these clusters develop from near to far through neighbor
gregation and produce larger clusters. Finally, full synch
nization can be established through neighbor cluster m
ing. This physical picture has been clearly shown in Refs.@9#
and @10# by using diagrams of synchronization plateaus a
bifurcation trees.

Nevertheless, in Ref.@10#, some of us found a novel kind
of phase synchronization, i.e., an oscillator can be sync
nized to a next-to-the-nearest-neighbor oscillator by a no
cal synchronization, while the oscillator in between is n
synchronized to its two neighbors. This observation is st
ingly contrary to our intuition. However, the finding the
was occasional. We did not know whether this nonlocal s
chronization is popular, whether we can find nonlocal s
chronization between clusters, and whether the nonlocal
chronization within larger spatial distance is possible.
particular, we did not understand the mechanism underly
this kind of nonlocal synchronization phenomena. This pa
is aiming to answer the above problems, by considering
coupled Rossler systems as our model.

First, we investigate a simple system with two coupl
nonidentical Rossler oscillators~No. 1 and No. 2 whose
natural frequencies are not equal! with No. 2 forced by a
periodic signal. It should be emphasized that the No. 1
cillator is coupled to the No. 2 one, but not connected w
the periodic forcing directly. Then any synchronization b
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s-
of
s
-
-
ely
tic

d

s.
t
i-

ld
g
g-
-
g-

d

o-
-

t
-

-
-
n-

g
r
e

s-

-

tween the No. 1 oscillator with the signal can be made o
through the dynamic variable of the No. 2 oscillator. O
interest rests in whether phase synchronization between
signal and the unforced oscillator~No. 1! can be established
while the forced one~No. 2! is in a desynchronized situation
The model reads

ẋ152w1y12z11e~x22x1!, ~1!

ẏ15w1x110.15y1 ,

ż150.21z1~x1210.0!,

ẋ252w2y22z21e~x12x2!,

ẏ25w2x210.15y21A sin~Lt !,

ż250.21z2~x2210.0!,

where subscripts 1 and 2 represent the unforced and fo
oscillators, respectively,w1 andw2 are the natural frequen
cies of the two oscillators,e is the coupling coefficient be
tween them,L is the forcing frequency, andA is the driving
intensity.

For a Rossler oscillator, we can define its average
quency~the rotation number! as @4#

V i5^du i~ t !/dt&5 lim
T→`

1

TE0

T

u̇ i~ t !dt, ~2!

based on the phase definition of

r i~ t !5Axi~ t !21yi~ t !2, u i~ t !5arctanS yi~ t !

xi~ t ! D , i 51,2.

~3!

To show nonlocal synchronization clearly, we fix th
natural frequencies of the two Rossler oscillatorsw1 andw2
to w151.0, w250.65, which stay far away each other.
Fig. 1 we takeA51.0, e50.1, change the driving frequenc
L from 0.97 to 1.03, and plot the rotation numbersV1 /L
and V2 /L vs L, respectively. From the flat plateau in Fig
1~a! we can clearly see that the No. 1 oscillatorV1 is locked
3552 ©2000 The American Physical Society
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to the forcing frequencyL, though it is not driven directly by
the injected signal. On the contrary, in Fig. 1~b! the average
frequency of No. 2,V2, is well desynchronized fromL. In
Fig. 2~a! we plot V j /L vs e ( j is 1 and 2), and find a
frequency-locking plateauV1 /L51 for 0.075,e,0.105
while the coupled system well stays at chaotic state. In F
2~b! we plot the phase difference between the No. 1 osci
tor and the driving forceDu1(t)5u1(t)2Lt, for the param-
eters before (e50.05) and on the frequency-locking platea
(e50.1). Before frequency locking,uDu1(t)u increases lin-
early with certain oscillation, while on the frequency-lockin
condition we find phase locking, i.e.,Du1(t) fluctuates
around a certain finite value. We call this situation nonlo
phase synchronization.

It is interesting to investigate why the unforced site~site
1! can be locked to the signal under the condition that
forced site~site 2! and also the coupling input from site 2 t
site 1 @i.e., ex2 in the first equation of Eqs.~1!# are not
synchronized to the injecting signal. In Fig. 3~a! we plot the
spectrum of thex1 variable in the nonlocal synchronizatio
situation, which shows a single huge peak atf ( f 5L/2p).
It should be noted that the frequencyf 1, which is the fre-
quency of site 1 when driving is absent, is a bit away fromf,
and then no synchronization can be expected without
coupling between sites 1 and 2. In Fig. 3~b! we plot the
spectrum ofx2 for the same parameters of Fig. 2~a!, and find
that site 2 has a huge spectrum peak far from the sig
frequency f, indicating desynchronization. Nevertheles
there is a small spectrum peak atf induced by the injecting
signal. This small peak shows that a small component of
injected spectrum is produced in the output of the desync

FIG. 1. ~a! and~b! V1 /L andV2 /L plotted vsL, respectively.
w151.0, w250.65, A51.0, e50.1. There is a plateau atV1 /L
51 for 0.991,L,1.003 in~a!, where nonlocal frequency locking
occurs between the signal and the No. 1 site that is not dire
forced.
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nized forced site. It is just this small component that play
key role for the nonlocal phase synchronization, i.e., throu
the coupling, this component drives the site 1 to shift
frequency and induces the phase synchronization betw
site 1 and the signal. In Figs. 3~c! and 3~d! we do the same as
3~a! and 3~b!, respectively, by movingL away from the
synchronization region, and it is clear that bothx1 andx2 are
desynchronized from the injecting signal.

Above we have investigated a model of two coupl
Rossler oscillators with one driven by an external perio
signal and have found the nonlocal synchronization betw
the unforced oscillator and the injected signal. Now we co
to autonomous systems of coupled Rossler oscillators
study the possible mutual nonlocal synchronization. T
model reads

ẋ j52wjyj2zj1e~xj 111xj 2122xj !,

ẏ j5wjxj10.15yj ,

żj50.21zj~xj210.0!, ~ j 51, . . . ,N!, ~4!

where nearest coupling is considered,e represents the diffu-
sive coupling coefficient,N is the number of oscillators, an
wj are the natural frequencies of the coupled oscillato
which are random numbers in some scope. We use a peri
boundary condition.

We start with consideringN55. In Fig. 4, we get a typi-
cal bifurcation tree revealing the various synchronizatio
between the oscillators by varyinge from a small value to a

ly

FIG. 2. w151.0, w250.65, A51.0, L51.0. ~a! V j /L vs e ( j
is 1 and 2). Nonlocal frequency locking occurs for 0.075,e
,0.105, and the coupled system stays at chaotic state.~b! Du1(t)
5u1(t)2Lt plotted vs t for e50.05 ~no synchronization! and e
50.1 ~synchronization!. Phase locking between the signal and t
No. 1 site is clearly observed on the frequency-locking plateau
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FIG. 3. ~a! and~b! The spectra
of x variables of sites 1 and 2, re
spectively. L51.0, which is in-
side of the nonlocal synchroniza
tion region of Fig. 1~a!. The
arrows f 1 indicate the spectrum
peak of site 1 without driving. The
arrows f ( f 5L/2p) represent the
frequency of forcing. Both are no
equal to each other.~c! and ~d!
The same as~a! and ~b! except
L51.03, which is outside of the
nonlocal synchronization region.
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large one. In particular, at the parameter interval 0.04,e
,0.05, a two-site cluster~2, 3! synchronizes with the site 5
nonlocally. In Figs. 5~a! and 5~b! we plot Du j ,5(t)5u j (t)
2u5(t) off and at nonlocal synchronization, respectively.
phase locking between the two nonlocal oscillators is clea
shown in Fig. 5~b!, moreover, we find that while sites 3 an
5 are synchronized to each other, the site in between,
No. 4 is not in synchronization with them.

In Figs. 6~a!, 6~b!, 6~c!, and 6~d! we show logarithms of
the spectra of all five oscillators ate50.01, e50.03, e
50.045, ande50.1, respectively. The rotation numbers
the oscillators are determined by their highest spectrum p
then certain phase synchronizations appear if some of
highest peaks of coupled oscillators stay at a same loca
When the coupling intensity is small, all the oscillators ta
frequencies near their natural frequencies and remain de
chronized@Fig. 6~a!#. As e increases, some nearest oscillato

FIG. 4. N55, the bifurcation tree of coupled chaotic Ross
oscillators, whose natural frequencies are random numbers,
cated in the figure ate50. In the region 0.04,e,0.05, nonlocal
synchronization between a cluster~2,3! and an oscillator~5!
emerges.
ly
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FIG. 5. ~a! Du3,5(t)5u3(t)2u5(t) plotted vst, e50.01, it is

clear that sites 3 and 5 are desynchronized.~b! Du j ,5(t)5u j (t)
2u5(t) ( j 53 and 4) plotted vst, e50.045, so nonlocal synchro
nization between sites 3 and 5 is obvious while the middle site
not in synchronization state under the same condition.
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FIG. 6. The spectra of all the five oscillators of Fig. 4 at different coupling coefficients~a! e50.01, ~b! e50.03, ~c! e50.045, and~d!
e50.1.
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having near frequencies~e.g., sites 2, 3! get to be synchro-
nized to make a cluster@Fig. 6~b!#, so the corresponding
peaks move to a same location in the spectrum figure.
certain coupling intensity, the nonlocal oscillators with clo
~but not equal! nature frequencies can move their main sp
trum peaks to the same position, leading to the same rota
number, i.e., nonlocal synchronization. This situation can
clearly seen in Fig. 6~c! ~sites 2, 3, and 5!. An interesting
point is that as the nonlocal phase synchronization occ
the spectra of the oscillators between the synchronized o
show small peaks at the synchronous frequency though
main peaks are away from it~see the spectrum of No. 1!.
These small synchronous components play the key role
bridges leading to the synchronization between the nonlo
oscillators. By further increasing the couplinge, the system
undergoes complicated synchronization and desynchron
tion transitions as shown in Fig. 4, and finally reaches
synchronization for sufficient largee. This is the case of Fig
6~d!. Moreover, it is observed that the system motion in
whole coupling range of nonlocal synchronization in Fig.
0.04,e,0.05, is chaotic, then we are considering chao
synchronization.

In Figs. 4–6, we find nonlocal synchronization in a we
sense, i.e., the synchronization occurs between a small
ter ~2, 3! and a single oscillator~5!; the nonlocal distance is
only a single site. It is interesting to detect the possibility
more general nonlocal synchronization, e.g., the nonlo
synchronization between large clusters and over large
tance. In Fig. 7~a! we take N515, and again randomly
choose the natural frequencies of the coupled oscillators.
changee from 0.0 to 0.45 and plot the rotation numbersV j
in Fig. 7~a!. For this many-body system, we find indeed no
or
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FIG. 7. ~a! The same as Fig. 4 exceptN515. In the region
0.195,e,0.245, nonlocal synchronization between two clust
~3–6! and ~10–12! appears. Moreover, the distance between th
two synchronized clusters is 3-site.~b! The blowup of the rectangle
region of ~a!.
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local phase synchronization between two large clusters,
the clusters~3–6! and ~10–12!, and the distance betwee
these two clusters reaches three sites. In order to make
above conclusion more convincing, in Fig. 7~b! we amplify
the rectangle region of Fig. 7~a!, then the nonlocal synchro
nization of two large clusters is shown without any ambig
ity. In Fig. 8 we do the same as Fig. 5 with the nonloc
synchronization of the 15-site system~Fig. 7! being consid-
ered. Again, clear phase locking of nonlocal sites~sites 3 and
10! is justified while some sites~e.g., site 9! in between are
well desynchronized.

In Fig. 9 we plot the spectra ofx variables of all of the 15
oscillators of the system by fixinge50.225, which is right in
the nonlocal synchronization region of Fig. 7. The spectra
3–6 and 10–12 sites have the main spectrum peaks ex
at the same synchronous frequency. On the other hand
spectra of all other nonsynchronized sites between the
synchronized clusters have small components at the sync
nous frequency, and these components fulfill the task
transferring the synchronization between the two distan
separated clusters.

From Figs. 4 and 7, it is clear that the nonlocal synch
nizations take place in a certain intermediate range of c
pling intensity, and both too small and too large couplin
will destroy this kind of synchronization. Too small couplin
produces too weak signals, which are not sufficient for tra
ferring synchronization between the corresponding nonlo

FIG. 8. The same as Fig. 5 with 15-site system@Fig. 7# is con-
sidered.~a! e50.125. ~b! e50.225. Nonlocal synchronization be
tween sites 3 and 10 is observed, which belong to two separ
synchronized clusters, while the sites in between~e.g., site 9! are
not in synchronization status.
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sites, while too large coupling can bring the intermedia
sites into synchronizations, and then change the nonlo
synchronizations to local ones. We have investigated m
general cases, such as the coupled Rossler system with l
N and with both diffusive and gradient couplings, and fou
nonlocal synchronizations can be often observed, depen
on the distributions of natural frequencies of the oscillato

In conclusion, we have investigated the nonlocal ph
synchronization of chaotic oscillators in detail. This synch
nization can occur between an injected signal and oscilla
not directly forced, and can also occur between nonneigh
oscillators. Even the nonlocal synchronization can occur
tween chaotic clusters, with a relatively large spatial d
tance. The mechanism underlying this seemly strange s
chronization has been very clear: the synchrono
components can be transferred among the nonsynchron
sites, which produce the nonlocal synchronization of sites
clusters that are a distance apart.
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ed FIG. 9. The spectra ofx variables of all 15 oscillators.e
50.225, which is in the nonlocal synchronization region of Fig.
Note the small synchronization spectrum components in the spe
of nonsynchronized sites 1, 2, 7–9, 13–15, which play the role
transferring nonlocal synchronization.
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