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Nonlocal chaotic phase synchronization
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A novel synchronization behavior, nonlocal chaotic phase synchronization, is investigated. For two coupled
Rossler oscillators with only one forced by an injected periodic signal, the phase of the unforced oscillator can
be locked to the phase of the periodic signal while the forced one is well unlocked by the signal; in a chain of
coupled chaotic oscillators with nearest coupling, the phase of an osciltatar clustey can be locked to
another nonneighbor one. Moreover, the mechanism underlying the transition to nonlocal synchronization is
discussed in detail.

PACS numbd(s): 05.45—-a

Synchronization is a basic phenomenon in physics, distween the No. 1 oscillator with the signal can be made only
covered by Huygens at the beginning of the modern age dhrough the dynamic variable of the No. 2 oscillator. Our
science[1]. In the classical sense, synchronization meangnterest rests in whether phase synchronization between the
frequency and phase locking of periodic oscillators. Re-signal and the unforced oscillat@¥o. 1) can be established
Cenﬂy, the notion of “phase Synchronization” has been eX_Wh”e the forced oneéNo. 2) isina desynchronized situation.
tended to chaotic systems, and scientists have extensivehhe model reads
studied not only the phase synchronizations between chaotic

oscillators with external periodic driving@—6], but also that X1= — Wiy — 2+ €(Xp—Xg), (1)

of the coupled oscillator systerhg—12]. Phase synchroniza- )

tion is an intrinsic feature in the relation between the coupled y1=W;x;+0.15/,,

oscillators(or between oscillators with injected signaland )

this feature gives essential influence to the system dynamics. z,=0.2+2z;(x;—10.0,
For a chaotic system of coupled oscillators with nearest

coupling whose natural frequencies are not equal, the intui- Xo=—WoYo— Zp+ (X1 — Xp),

tive idea for phase synchronization is the following: due to

the nearest-coupling nature, some neighbor oscillators should Yo=W,X,+0.15/,+ A sin(At),

first form synchronous clusters, then by increasing coupling

these clusters develop from near to far through neighbor ag- 2,= 0.2+ 2,(x,— 10.0),

gregation and produce larger clusters. Finally, full synchro-
nization can be established through neighbor cluster mergyhere subscripts 1 and 2 represent the unforced and forced
ing. This physical picture has been clearly shown in Ré&fs.  oscillators, respectivelyw; andw, are the natural frequen-
and[10] by using diagrams of synchronization plateaus ancies of the two oscillatorse is the coupling coefficient be-
bifurcation trees. tween themA is the forcing frequency, and is the driving
Nevertheless, in Ref10], some of us found a novel kind intensity.
of phase synchronization, i.e., an oscillator can be synchro- For a Rossler oscillator, we can define its average fre-
nized to a next-to-the-nearest-neighbor oscillator by a nonloguency(the rotation numbgras[4]
cal synchronization, while the oscillator in between is not
synchronized to its two neighbors. This observation is strik-
ingly contrary to our intuition. However, the finding there
was occasional. We did not know whether this nonlocal syn-
chronization is popular, whether we can find nonlocal synhased on the phase definition of
chronization between clusters, and whether the nonlocal syn-

Q;=(dg;(t)/dty= Iim% Téi(t)dt, 2
0

T—oo

chronization within larger spatial distance is possible. In > 5 yi(t) _
particular, we did not understand the mechanism underlying "i(1) = VXi(D*+yi(D7,  6i(t)=arcta x (1))’ =12

this kind of nonlocal synchronization phenomena. This paper 3

is aiming to answer the above problems, by considering the

coupled Rossler systems as our model. To show nonlocal synchronization clearly, we fix the

First, we investigate a simple system with two couplednatural frequencies of the two Rossler oscillatarsandw,
nonidentical Rossler oscillator@No. 1 and No. 2 whose to w;=1.0, w,=0.65, which stay far away each other. In
natural frequencies are not equalith No. 2 forced by a Fig. 1 we takeA=1.0, e=0.1, change the driving frequency
periodic signal. It should be emphasized that the No. 1 osA from 0.97 to 1.03, and plot the rotation numbélg/A
cillator is coupled to the No. 2 one, but not connected withandQ,/A vs A, respectively. From the flat plateau in Fig.
the periodic forcing directly. Then any synchronization be-1(a) we can clearly see that the No. 1 oscillaf®y is locked
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FIG. 1. (& and(b) /A andQ,/A plotted vsA, respectively. FIG. 2. w;=1.0, w;=0.65,A=1.0, A=1.0.(a) Q;/A vse (]

w;=1.0, w,=0.65, A=1.0, e=0.1. There is a plateau &, /A is 1 and 2). Nonlocal frequency locking occurs for 0.8%5
=1 for 0.99% A <1.003 in(a), where nonlocal frequency locking fo'los' and the coupled sysiem stays at chaotic staltel ,(t)
occurs between the signal and the No. 1 site that is not directly” ?1(t) At plotted vst for e=0.05 (no synchronizationand e

forced. =0.1 (synchronizatioh Phase locking between the signal and the

No. 1 site is clearly observed on the frequency-locking plateau.

to the forcing frequency, though it is not driven directly by _ o i

the injected signal. On the contrary, in FigblLthe average nized forced site. It is just this small component fchat plays a
frequency of No. 202, is well desynchronized from. In key role fqr the qonlocal phase synchronlza_tlon, ie., th_rou_gh
Fig. 2@ we plot Q;/A vse (j is 1 and 2), and find a the coupling, th_ls component drives the site 1 to shift its
frequency-locking platead);/A=1 for 0.075<e<0.105 fr'equency andllnduces t.he phase synchronization between
while the coupled system well stays at chaotic state. In FigSite 1 and the signal. In Figs(@ and 3d) we do the same as
2(b) we plot the phase difference between the No. 1 oscilla3(@ and 3b), respectively, by moving\ away from the

tor and the driving force 6,(t) = 6,(t) — At, for the param- synchronlza_non region, and_ itis clea_r that bathandx, are
eters before=0.05) and on the frequency-locking plateau d€synchronized from the injecting signal.

(e=0.1). Before frequency lockindA 6,(t)| increases lin- Above we have investigated a model of two coupled

early with certain oscillation, while on the frequency-locking Rossler oscillators with one driven by an external periodic
condition we find phase locking, i.eA6;(t) fluctuates signal and have found the nonlocal synchronization between

around a certain finite value. We call this situation nonlocaltn€ unforced oscillator and the injected signal. Now we come

phase synchronization. to autonomous systems of coupled Rossler o;cﬂlgtors and
It is interesting to investigate why the unforced sisite study the possible mutual nonlocal synchronization. The

1) can be locked to the signal under the condition that thenodel reads

forced site(site 2 and also the coupling input from site 2 to

site 1[i.e., ex, in the first equation of Eqs(1)] are not Xj= =Wy —Zj+e(Xj 1+ X1 2X)),
synchronized to the injecting signal. In FigaBwe plot the )

spectrum of thex; variable in the nonlocal synchronization yi=w;x;+0.15;,

situation, which shows a single huge pealf aff = A/27). _

It should be noted that the frequenéy, which is the fre- zj=0.2+2;(x;—10.0, (j=1,...N), (4)

guency of site 1 when driving is absent, is a bit away fripm

and then no synchronization can be expected without thehere nearest coupling is consideredgepresents the diffu-
coupling between sites 1 and 2. In FiglbBwe plot the sive coupling coefficientN is the number of oscillators, and
spectrum o, for the same parameters of Figap and find ~ w; are the natural frequencies of the coupled oscillators,
that site 2 has a huge spectrum peak far from the signavhich are random numbers in some scope. We use a periodic
frequency f, indicating desynchronization. Nevertheless,boundary condition.

there is a small spectrum peakfanduced by the injecting We start with consideringl=5. In Fig. 4, we get a typi-
signal. This small peak shows that a small component of theal bifurcation tree revealing the various synchronizations
injected spectrum is produced in the output of the desynchrdsetween the oscillators by varyireggfrom a small value to a
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large one. In particular, at the parameter interval €.64
<0.05, a two-site clustef2, 3) synchronizes with the site 5
nonlocally. In Figs. &) and §b) we plot A 6; 5(t) = 6;(t)
— 65(t) off and at nonlocal synchronization, respectively. A
phase locking between the two nonlocal oscillators is clearly o5
shown in Fig. %b), moreover, we find that while sites 3 and (a)
5 are synchronized to each other, the site in between, i.e., 204
No. 4 is not in synchronization with them.
In Figs. §a), 6(b), 6(c), and &d) we show logarithms of 154
the spectra of all five oscillators &=0.01, e=0.03, e
=0.045, ande=0.1, respectively. The rotation numbers of T 10
the oscillators are determined by their highest spectrum peak, 2"’ 5.
then certain phase synchronizations appear if some of the
highest peaks of coupled oscillators stay at a same location. 04
When the coupling intensity is small, all the oscillators take
frequencies near their natural frequencies and remain desyn- 54— T T T T T T
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FIG. 4. N=5, the bifurcation tree of coupled chaotic Rossler

FIG. 5. (a) Af35(t)=65(t)— O5(t) plotted vst, e=0.01, it is

oscillators, whose natural frequencies are random numbers, indélear that sites 3 and 5 are desynchronizéal. A ; 5(t) = 6;(t)

cated in the figure a#=0. In the region 0.04e<0.05, nonlocal
synchronization between a clusté2,3 and an oscillator(5)

emerges.

—65(t) (j=3 and 4) plotted v¢, e=0.045, so nonlocal synchro-
nization between sites 3 and 5 is obvious while the middle site 4 is

not in synchronization state under the same condition.



PRE 62 NONLOCAL CHAOTIC PHASE SYNCHRONIZATION 3555

1 No.5 (a 1 No.5 (C
0v1E 0.1

042 . Q13 . 014 . Q15 . 018 012 0.I13 0.I14 0.I15 018

3 No4 ' ! ' 3 7 No4

1o - 1 1
o133 : |‘ E 013 , PO : . ‘llr .

012 0|13 01I4 0;]5 016 0_ 0;13 0;14 °I15 Q16

| J No3 3 13 No3 3
0.1 E——,—&MIMM‘_,&W 0.1 Al ,A Aoy

012 013 014 0,15 0.16 012 0.13 0.'14 0.;15 0,16

Amplitude
Amplitude
lo _E—

. iy
012 013 014 Q15 016 0 . URES . 0.4 . . v
3 Noa 3 No.t
14 > ﬂ! 3 3 Mj 1
3 3 3 i A Py
0.1 T T T T T ok o1 T T T T T
0.12 0.13 0.14 0.15 0.18 0.12 0.13 0.14 0.15 0.18
Frequency(Hz) Frequency (Hz)
T T T T T T
No.5
Jros (b); 1] J’\. (d);
0.1 ~ II““l |k 1 0.1 T # T T 1
012 0.13 0.14 0.15 016 02 013 . 014 0.16 0,16
No.4 j ! ! No.4
14 A. 1 i 1
0.1 T M. o 0.1 T + T T
012 0.13 0.14 0.15 018 012 013 0.14 016 016
T T T = T T T
No.3 E No.3
14 - 14 A 4
L L
% 0.1 0.1 T 4 T T
3 012 013 0.14 0.15 016 @ og2 013 0.14 0.16 016
= No.2 ' ' ! B No.2 ! '
a 14 k- 3 1 o
£ 0.1 T i T t 9 o o T A T
< 012 013 0.14 0.15 ot & og2 013 014 015 016
No.1 i ! 3 No.1 ! '
11 b < 14 -
0.1 . A . 1 ke : dhs 3 0.1 . " v .
012 013 0.14 0.15 0186 0.12 013 0.14 0.15 016
Frequency (Hz) Frequency (Hz)

FIG. 6. The spectra of all the five oscillators of Fig. 4 at different coupling coefficights=0.01, (b) e=0.03,(c) e=0.045, andd)
e=0.1.

having near frequencig®.g., sites 2, Bget to be synchro-
nized to make a clustdFig. 6b)], so the corresponding
peaks move to a same location in the spectrum figure. For
certain coupling intensity, the nonlocal oscillators with close
(but not equal nature frequencies can move their main spec-
trum peaks to the same position, leading to the same rotation
number, i.e., nonlocal synchronization. This situation can be
clearly seen in Fig. @) (sites 2, 3, and 6 An interesting
point is that as the nonlocal phase synchronization occurs,
the spectra of the oscillators between the synchronized ones
show small peaks at the synchronous frequency though their
main peaks are away from {see the spectrum of No..1
These small synchronous components play the key role of
bridges leading to the synchronization between the nonlocal
oscillators. By further increasing the coupliegthe system
undergoes complicated synchronization and desynchroniza-
tion transitions as shown in Fig. 4, and finally reaches full
synchronization for sufficient large This is the case of Fig.
6(d). Moreover, it is observed that the system motion in the
whole coupling range of nonlocal synchronization in Fig. 4,
0.04<e<0.05, is chaotic, then we are considering chaotic o
synchronization. (10-12)
In Figs. 4—6, we find nonlocal synchronization in a weak 056
sense, i.e., the synchronization occurs between a small clus- 14-6)
ter (2, 3 and a single oscillato{5); the nonlocal distance is
only a single site. It is interesting to detect the possibility for 0.18 0.20 022 0.24 026
more general nonlocal synchronization, e.g., the nonlocal
synchronization between large clusters and over large dis- FiG. 7. (a) The same as Fig. 4 except=15. In the region
tance. In Fig. 7@ we take N=15, and again randomly 0.195<e<0.245, nonlocal synchronization between two clusters
choose the natural frequencies of the coupled oscillators. W@-6) and (10-12 appears. Moreover, the distance between these
changee from 0.0 to 0.45 and plot the rotation numbélg  two synchronized clusters is 3-sit@) The blowup of the rectangle
in Fig. 7(a). For this many-body system, we find indeed non-region of(a).

0.88

0.87

(3-6,10-12)
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sidered.(a) e=0.125.(b) e=0.225. Nonlocal synchronization be- ) )
tween sites 3 and 10 is observed, which belong to two separated F!G:- 9. The spectra ok variables of all 15 oscillatorse

synchronized clusters, while the sites in betwéer., site 9 are =0.225, which is in the _non_local synchronization region of Fig. 7.
not in synchronization status. Note the small synchronization spectrum components in the spectra

of nonsynchronized sites 1, 2, 7-9, 13-15, which play the role of

o _ transferring nonlocal synchronization.
local phase synchronization between two large clusters, i.e.,

the clusters(3—6) and (10-12, and the distance between gjies while too large coupling can bring the intermediate

these two clusters reaches three sites. In order to make th&as into synchronizations, and then change the nonlocal
above conclusion more convincing, in Figby we amplify  gynchronizations to local ones. We have investigated more
the rectangle region of Fig.(&, then the nonlocal synchro- genera| cases, such as the coupled Rossler system with larger
nization of two large clusters is shown without any ambigu-y ang with both diffusive and gradient couplings, and found
ity. In Fig. 8 we do the same as Fig. 5 with the nonlocal\onjocal synchronizations can be often observed, depending
synchronization of the 15-site systeiffig. 7) being consid- o, the distributions of natural frequencies of the oscillators.
ered. Again, clear phase locking of nonlocal sitsites 3 and In conclusion, we have investigated the nonlocal phase
10) is justified while some sitee.g., site 9in between are  gynchronization of chaotic oscillators in detail. This synchro-
well desynchronized. , nization can occur between an injected signal and oscillators
In Fig. 9 we plot the spectra ofvariables of all of the 15,4t girectly forced, and can also occur between nonneighbor
oscillators of the system by fixing=0.225, which is rightin - ggillators. Even the nonlocal synchronization can occur be-
the nonlocal synchronization region of Fig. 7. The spectra ofyeen chaotic clusters, with a relatively large spatial dis-
3-6 and 10-12 sites have the main spectrum peaks exaclfynce. The mechanism underlying this seemly strange syn-
at the same synchronous freque_ncy. On the other hand, th@,ionization has been very clear: the synchronous
spectra of all other nonsynchronized sites between the tWeomponents can be transferred among the nonsynchronized

synchronized clusters have small components at the synchryes, which produce the nonlocal synchronization of sites or
nous frequency, and these components fulfill the task ofj,sters that are a distance apart.
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